Full Content is available to subscribers

Subscribe/Learn More  >

The Frictional Coefficient of Bovine Articular Cartilage Correlates With Interstitial Fluid Load Support in Creep

[+] Author Affiliations
Ramaswamy Krishnan, Gerard A. Ateshian

Columbia University, New York, NY

Paper No. IMECE2002-32522, pp. 135-136; 2 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-3650-9 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Articular cartilage functions as the bearing material in joints and provides low friction and wear over a lifetime. The cartilage lubrication mechanism has not yet been fully characterized though several theories have been proposed. In previous studies [1–3] it was hypothesized that interstitial fluid load support contributes significantly to the reduction of the frictional coefficient due to load transfer from the solid to the fluid phase of the tissue. This study provides experimental verification for a theoretical model based on this hypothesis [1,4]. The specific aim of this study is to experimentally investigate the correlation between the frictional response of bovine articular cartilage, and its interstitial fluid load support during sliding against glass under a constant load.

Copyright © 2002 by ASME
Topics: Creep , Fluids , Stress , Cartilage



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In