Full Content is available to subscribers

Subscribe/Learn More  >

MADYMO Simulations of Occupant and Vehicle Kinematics in Offset and Oblique Barrier Tests

[+] Author Affiliations
Rex T. Shea, Jiri Kral

General Motors Corporation

Paper No. IMECE2005-83009, pp. 419-426; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Engineering/Technology Management
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Engineering and Technology Management Group
  • ISBN: 0-7918-4230-4 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Oblique and offset impacts occur more frequently than full frontal impacts and the resulting occupant and vehicle kinematics are more complicated. Simulations of these test modes are more involved with added vehicle degrees of freedom. Additional occupant interactions with the vehicle interior need to be considered so that the occupant kinematics can be correlated more accurately. In order to capture the vehicle motion in an offset or oblique impact, a prescribed motion approach is preferred where the vehicle is given a three-dimensional motion with six degrees of freedom. With a planar motion assumption, the dominant angular motion about the vertical direction can be derived from linear accelerations measured at two locations where the vehicle deformation is a minimum. In a previous study the angular kinematics was given to a coordinate origin located on the vehicle centerline and longitudinally near the rear rocker. The instantaneous center of rotation was assumed to be fixed at this point during the event. This is referred to as Method I in this paper. A new approach, referred to as Method II, applied translational displacement to three bodies, which carried the passenger compartment through stiff spring elements. The displacements were integrated from measured accelerations, eliminating the uncertainty of a shifting center of rotation. Both methods assumed the vehicle frame between the front and rear rockers as a rigid body. The IP and steering column intrusions and floor deformations were neglected. The results from both methods were correlated to a pair of 40 kph 30 degree angle impact tests and an IIHS ODB test. Method II showed a slightly better timing correlation for the angle tests and the IIHS ODB test. However, both methods didn’t predict the lateral head contact for the driver in the left angle test and the passenger in the right angle test. More interior details have to be included in the model to capture the lateral motion of the occupants. The prescribed motion method is a more general approach than the commonly used inverse kinematics method, and can be applied to full frontal impact as well. The versatility of the method provides a basis for a modular approach in occupant simulations.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In