0

Full Content is available to subscribers

Subscribe/Learn More  >

Intermittent Hydrostatic Pressurization Modulates Gene Expression in Human Dermal Fibroblasts Seeded in Three-Dimensional Polymer Scaffolds

[+] Author Affiliations
Steven B. Nicoll, Robert L. Mauck, Rick C. Tsay, Clark T. Hung, Gerard A. Ateshian

Columbia University, New York, NY

Paper No. IMECE2002-33604, pp. 103-104; 2 pages
doi:10.1115/IMECE2002-33604
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-3650-9 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Mechanical stimuli are known to regulate the morphology and differentiated function of connective tissue cells. In particular, hydrostatic pressure has been reported to alter cytoskeletal organization in osteoblast-like cells (1) and chondrocytes (2), and to modulate metabolic activity in both chondrocytes (3–5) and intervertebral disc cells (6). The cellular response to continuous hydrostatic pressure is generally catabolic (3) while intermittent hydrostatic pressure at frequencies ranging from 0.25–1.0 Hz (3–5) is anabolic, giving rise to increased expression and biosynthesis of extracellular matrix (ECM) components. Previously, human dermal fibroblasts in monolayer culture were shown to respond to hydrostatic pressure by increasing heat shock protein expression levels (7). In this study, we characterize the effects of intermittent hydrostatic pressure on gene expression in human dermal fibroblasts seeded in three-dimensional polymer scaffolds.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In