Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Formulation and Vibration Frequency Analysis of a Fluid Filled Pipe

[+] Author Affiliations
Yi Jia, Reinaldo E. Madeira, Frederick Just-Agosto

University of Puerto Rico at Mayaguez

Paper No. IMECE2005-81807, pp. 127-132; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Recent Advances in Solids and Structures
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4228-2 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


This paper presents the formulation of a finite element model and vibration frequency analysis of a fluid filled pipe having variable cross sections. The finite element method with consideration of Coriolis force developed in [1] was adopted for frequency analysis of a pipe in this study. The stiffness matrix, the c-matrix (Coriolis force) and mass (for dynamic analysis) matrix that contain all parameters of the fluids properties and flow conditions have been developed. The numerical model was employed to simulate the dynamic performance of the piping system with the specific configurations for an application. A critical relationship between the natural frequencies and pipe geometry has been established. The results of frequencies analysis of the piping system gave us an insight whether a resonance frequency might occur.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In