Full Content is available to subscribers

Subscribe/Learn More  >

Challenges of Investigating Fluid-Elastic Lock-In of a Shallow Cavity and a Cantilevered Beam at Low Mach Numbers

[+] Author Affiliations
Kristin Lai-Fook Cody, Martin L. Pollack

Lockheed-Martin, Inc.

Stephen A. Hambric

ARL/Penn State

Paper No. IMECE2005-79162, pp. 253-261; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4225-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


At low flow Mach numbers, fluid-elastic lock-in may occur when a shear layer instability interacts with an adjoining or nearby structure and the resulting vibration of the structure reinforces the shear layer instability. Despite the significant amount of study of lock-in with acoustic resonators, fluid-elastic lock-in of a shear layer fluctuation over a cavity and a structural resonator is not well understood and has not been thoroughly studied. Design of an experimental system is described and preliminary diagnostics are addressed as a basis for a platform for developing a fundamental understanding of the feedback mechanism, analytical models for predicting and describing fluid-elastic lock-in conditions, and the roles of the fluid and structural dynamics in the process. Features of the system investigated here include design for characterization of modal excitation of a beam-like structure from the shear layer fluctuation, isolation of the predominant instability source to the shear layer fluctuation over the cavity, variation of the cavity size to identify critical parameters that govern fluid-elastic lock-in, and alteration of the inflow boundary layer momentum thickness. So far, lock-in between the cavity and the distributed elastic resonator has not been achieved. Further investigations to determine the role of the source and resonator attributes are underway.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In