0

Full Content is available to subscribers

Subscribe/Learn More  >

A Full-Scale 3D Finite Element Analysis for No-Underfill Flip Chip Package

[+] Author Affiliations
S. M. Hsu, J. C. Lin, K. N. Chiang

National Tsing Hua University, Hsinchu, Taiwan

Paper No. IMECE2002-39674, pp. 311-318; 8 pages
doi:10.1115/IMECE2002-39674
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3648-7 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

This research establishes a micro-macro 3D finite element model for no underfill flip chip BGA package. The no underfill package uses a ceramic-like (CTE close to silicon) material mounted on the backside of the flip chip substrate to constrain the thermal expansion of the organic substrate and enhance the reliability of the solder joint. This work attempts to design a constrained structure to enhance the reliability of the no underfill flip chip package. For the special design of constrained structure, a full-scale 3D finite element model is needed to investigate some mechanical behaviors that cannot be revealed by the 2D finite element model. However, to establish a full-scale 3D finite element model, the large computation time is an issue. The equivalent beam concept is adopted in this research to overcome this drawback of the finite element models. The results indicate that the equivalent beam concept is a feasible methodology for reducing the computation time of the 3D finite element model. Further, the new design structure could improve package reliability, increase manufacturing throughput and thermal performance, and maintain reworkability of the flip chip structure.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In