0

Full Content is available to subscribers

Subscribe/Learn More  >

Triply Coupled Vibration Band Gaps in Periodic Thin-Walled Open Cross Section Beams

[+] Author Affiliations
Dianlong Yu, Yaozong Liu, Jing Qiu, Gang Wang, Jihong Wen

National University of Defense Technology

Paper No. IMECE2005-79880, pp. 143-148; 6 pages
doi:10.1115/IMECE2005-79880
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4225-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Triply coupled vibration through periodic thin-walled open cross section nonsymmetrical beams composed of two kinds of material is studied in this paper. Based on the triply coupled vibration equation, plane wave expansion method for the thin-walled beams is provided. If the filling fraction keeps constant, the lattice is one of the factors that affect the normalized gap width. If the lattice and filling fraction keep constant, the Young’s modulus contrast plays a fundamental role for the band gap width, but not density contrast. Finally, the frequency response of a finite periodic binary beam is simulated with finite element method, which provides an attenuation of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.

Copyright © 2005 by ASME
Topics: Vibration , Energy gap

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In