0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Dynamic Short-Time Scale Wave Propagation and the Characterization of Optimal Packaging Material for High Performance Electronic Packages

[+] Author Affiliations
Yoonchan Oh, C. Steve Suh, H.-J. Sue

Texas A&M University, College Station, TX

Paper No. IMECE2002-39669, pp. 269-276; 8 pages
doi:10.1115/IMECE2002-39669
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3648-7 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

The demand for higher clock speed and higher level of integration, and, at the same time, smaller die size for high-performance electronic packages has accompanied by a drastic increase in package power consumption and dissipation. Large transient thermal gradients are thus experienced upon each power-on. Unlike thermal cycling test which is usually performed to evaluate the fatigue life of solder joints, rapid thermal transient is of major concern for overall package reliability. This rapid transient at short-time scale suggests that dynamic thermal-mechanical phenomenon in packages needs to be fully understood and the associated failure mechanisms identified for improved microelectronic reliability. In this study, how rapid thermal transients affect the generation, spectral characteristics, and interference of the induced stress waves propagating in high-density packaging configurations undergoing power cycling are investigated. The short-time effects facilitated by dispersive waves in current packaging configurations are studied and the possible mechanisms behind mechanical failures including solder cracking and delamination are discussed. Knowledge base thus established enables a set of guidelines to be proposed for developing new types of polymeric underfill material. Materials hence formulated would have optimal characteristics in response to the short-time effect to effectively discourage transient wave phenomena and thus improve the overall package reliability. The presented investigation provides a better understanding of the underlying physics governing the response of a high-performance package subject to rapid thermal-mechanical transients, which could potentially be the foundation for the formulation of new molecularly designed packaging materials and the associated manufacturing processes.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In