Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Wall Pressure Fluctuations on Simplified Automobile Shapes Using a Lattice Based Method

[+] Author Affiliations
Sivapalan Senthooran, Ganapathi Balasubramanian, David Freed

Exa Corporation

Bernd Crouse, Swen Noelting

Exa GmbH

Mark Gleason

DaimlerChrysler Corporation

Paper No. IMECE2005-81877, pp. 115-123; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4225-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


A comparison of experimental data and CFD simulation results of wall pressure fluctuations on simplified geometries that generate flow structures similar to an automobile are presented. The numerical results have been obtained using the commercial software PowerFLOW 3.4p4a. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of high Reynolds number flows over complex geometries, together with the acoustics. The geometries considered for this study represent the green house and the side mirror of a car. Spectral analysis is performed on the simulation data and the results are compared to the experimental data. This comparison provides good correlation between the simulation and experiment, and demonstrates the capability of this numerical scheme in predicting turbulent fluctuations due to complex flow phenomena.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In