Full Content is available to subscribers

Subscribe/Learn More  >

Acoustic Cloud Condensation Nuclei Counter

[+] Author Affiliations
Abhijit Deshpande, Marcellin Zahui

University of North Dakota

Paper No. IMECE2005-79800, pp. 13-19; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4225-8 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Analysis and simulation of an acoustic cloud condensation nuclei counter is presented. The instrument is capable of accurately counting the number of micro scale water droplets impacting a water surface. The sound produced underwater by the water droplets is determined when the droplets strike the water surface with an impact velocity equal to either their terminal or maximum velocity. First, the terminal velocities of the droplets are calculated using Stoke’s law and compared to measured velocities from Gunn and Kinzer. Then the maximum velocities that these droplets can sustain without breaking are calculated as a function of droplet diameter. Second, the sound due to droplet impact is estimated. Due to their size and water surface tension, there is no bubble formation at impact when the droplets are falling with terminal velocities. However conditions for regular bubble entrainments are established and limit velocities are calculated. Assuming that the micro water droplets can be accelerated, the maximum velocities for no bubble entrainments are calculated. The results show that the level of the sound produced by individual micro scale droplet falling with terminal velocity is so small that experimental verification is not possible. However, reasonable level of acoustic energy can be obtained by increasing the impact velocities of the droplets or by measuring the sound radiated by a group of impacting droplets. Finally, the droplets counting process is simulated using a water surface of one centimeter squared and a vertical growth chamber.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In