0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Charateristics of Advanced Gas Turbine Cogeneration Power Plants

[+] Author Affiliations
Meherwan P. Boyce

The Boyce Consultancy Group, LLC.

Paper No. IMECE2005-82325, pp. 1369-1380; 12 pages
doi:10.1115/IMECE2005-82325
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The performance analysis of the new generation of Gas Turbines in combined cycle operation is complex and presents new problems, which have to be addressed. The new units operate at very high turbine firing temperatures. Thus variation in this firing temperature significantly affects the performance and life of the components in the hot section of the turbine. The compressor pressure ratio is high which leads to a very narrow operation margin, thus making the turbine very susceptible to compressor fouling. The turbines are also very sensitive to backpressure exerted on them by the heat recovery steam generators. The pressure drop through the air filter also results in major deterioration of the performance of the turbine. The performance of the combined cycle is also dependent on the steam turbine performance. The steam turbine is dependent on the pressure, temperature, and flow generated in the heat recovery steam generator, which in turn is dependent on the turbine firing temperature, and the air mass flow through the gas turbine. It is obvious that the entire system is very intertwined and that deterioration of one component will lead to off-design operation of other components, which in most cases leads to overall drop in cycle efficiency. Thus, determining component performance and efficiency is the key to determining overall cycle efficiency. Thermodynamic modeling of the plant with individual component analysis is not only extremely important in optimizing the overall performance of the plant but in also determining life cycle considerations.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In