Full Content is available to subscribers

Subscribe/Learn More  >

Cyclic Mechanical Durability of Sn-3.9Ag-0.6Cu and Sn-3.5Ag Lead-Free Solder Alloys

[+] Author Affiliations
Qian Zhang, Abhijit Dasgupta

University of Maryland, College Park, MD

Peter Haswell

JDS Uniphase Corporation, Bloomfield, CT

Paper No. IMECE2002-39250, pp. 99-104; 6 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3648-7 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The isothermal mechanical durability properties of two lead-free solder alloys, Sn3.5Ag and Sn3.9Ag0.6Cu, are presented and compared to that of the baseline eutectic Sn37Pb solder. Cyclic mechanical tests are performed at room temperature at various strain-rates and load levels, using a thermo-mechanical-microstructural (TMM) test system developed by the authors. The data is analyzed using standard power-law durability models based on work and inelastic strain range. The Sn3.9Ag0.6Cu lead-free alloy is found to be most durable, followed by the Sn3.5Ag solder and finally the baseline Sn37Pb eutectic alloy, under the test conditions investigated. However, tests at high load levels show a greater difference in durability than tests at low load levels. This trend is the opposite of that reported in the literature for thermal cycling durability. A hypothesis is put forward to explain the observed differences between mechanical cycling and thermal cycling, based on the energy-partitioning damage model.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In