0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Modeling of Stresses Induced by High Speed Machining With Round Edge Cutting Tools

[+] Author Affiliations
Tugrul Özel, Erol Zeren

Rutgers University

Paper No. IMECE2005-81046, pp. 1279-1287; 9 pages
doi:10.1115/IMECE2005-81046
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

High speed machining (HSM) produces parts with substantially higher fatigue strength; increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the cutting tool associated with residual stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. In this paper, a dynamics explicit Arbitrary Lagrangian Eulerian (ALE) based Finite Element Method (FEM) modeling is employed. FEM techniques such as adaptive meshing, explicit dynamics and fully coupled thermal-stress analysis are combined to realistically simulate high speed machining with an orthogonal cutting model. The Johnson-Cook model is used to describe the work material behavior. A detailed friction modeling at the tool-chip and tool-work interfaces is also carried. Work material flow around the round edge-cutting tool is successfully simulated without implementing a chip separation criterion and without the use of a remeshing scheme. Finite Element modeling of stresses and resultant surface properties induced by round edge cutting tools is performed as case studies for high speed machining of AISI 1045 and AISI 4340 steels, and Ti6Al4V titanium alloy.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In