0

Full Content is available to subscribers

Subscribe/Learn More  >

Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting

[+] Author Affiliations
Kai Liu, Sathyan Subbiah, Shreyes N. Melkote

Georgia Institute of Technology

Paper No. IMECE2005-81477, pp. 1147-1156; 10 pages
doi:10.1115/IMECE2005-81477
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The specific cutting energy in machining is known to increase nonlinearly with decrease in uncut chip thickness. It has been reported in the literature that this phenomenon is dependent on several factors such as material strengthening, ploughing due to finite edge radius, and material separation effects. This paper examines the material strengthening effect where the material strength increases as the uncut chip thickness decreases down to a few microns. This increase in strength has been attributed to various factors such as strain-rate, strain gradient and temperature effects. Given that the increase in material strength in the primary and secondary deformation zones can occur due to many factors, it is important to understand the contributions of each factor to the increase in specific cutting energy and the conditions under which they are dominant. This paper analyzes two material strengthening factors: (i) the contribution of the decrease in the secondary deformation zone cutting temperature, and (ii) strain gradient strengthening, and their relative contributions to the increase in specific cutting energy as the uncut chip thickness is reduced. Finite Element (FE) based orthogonal cutting simulations are performed using aluminum 5083-H116, a work material with a small strain-rate hardening exponent, thus minimizing strain-rate effect. Suitable cutting conditions are identified under which the temperature and strain gradient effects are dominant. Orthogonal cutting experiments are used to validate the model in terms of the cutting forces. The simulation results are then analyzed to identify the contributions of the material strengthening factors to the size effect in specific cutting energy.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In