Full Content is available to subscribers

Subscribe/Learn More  >

Metallic Glass Surface Patterning by Micro-Molding

[+] Author Affiliations
Jeffrey Bardt, Nathan Mauntler, Gerald Bourne, Tony L. Schmitz, John C. Ziegert, W. Gregory Sawyer

University of Florida

Paper No. IMECE2005-81099, pp. 1123-1129; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The micro-molding of bulk amorphous metal to create sub-micrometer to sub-millimeter surface features was investigated. The goal was to demonstrate the reproduction of such features in a metallic material from a master. The bulk metallic glass material was embossed between the glass transition and crystallization temperatures. Silicon wafers patterned by deep reactive ion etching were used as masters. The patterns were designed to test the effects and interactions of aspect ratios, geometry, and spatial proximity. In addition to these patterns, a master was developed to mold two-dimensional channel geometries. Comparisons between the replicated features and the molds are provided.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In