0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotary Ultrasonic Machining of Titanium Alloy: A Feasibility Study

[+] Author Affiliations
N. J. Churi, Z. C. Li, Z. J. Pei

Kansas State University

C. Treadwell

Sonic-Mill Company

Paper No. IMECE2005-80254, pp. 885-892; 8 pages
doi:10.1115/IMECE2005-80254
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Due to their unique properties, titanium alloys are attractive for some unique applications especially in the aerospace industry. However, it is very difficult to machine these materials cost-effectively. Although many conventional and non-conventional machining methods have been reported for machining them, no reports can be found in the literature on rotary ultrasonic machining of titanium alloys. This paper presents an experimental study on rotary ultrasonic machining of a titanium alloy. The tool wear, cutting force, and surface roughness when rotary ultrasonic machining of the titanium alloy have been investigated using different tool designs and machining conditions. The results are compared with those when machining the same material with diamond grinding.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In