0

Full Content is available to subscribers

Subscribe/Learn More  >

An Analytical-Thermal Modeling Approach for Predicting Forces, Stresses and Temperatures in Machining With Worn Tools

[+] Author Affiliations
Yigit Karpat, Tugrul Özel

Rutgers University

Paper No. IMECE2005-81035, pp. 489-498; 10 pages
doi:10.1115/IMECE2005-81035
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

In this paper, predictive modeling of cutting and ploughing forces, stress distributions on tool faces and temperature distributions in the presence of tool flank wear are presented. The analytical and thermal modeling of orthogonal cutting that is introduced in Karpat, Zeren and Özel [3] extended for worn tool case in order to study the effect of flank wear on the predictions. Work material constitutive model based formulations of tool forces and stress distributions at tool rake and worn flank faces are utilized in calculating non-uniform heat intensities and heat partition ratios induced by shearing, tool-chip interface friction and tool flank face-workpiece interface contacts. In order to model forces and stress distributions under the flank wear zone, a force model from Waldorf [4] is adapted. Model is tested and validated for temperature and force predictions in machining of AISI 1045 steel and AL 6061-T6 aluminum.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In