0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanistic Modeling of Process Damping in Peripheral Milling

[+] Author Affiliations
C. Y. Huang, J.-J. Junz Wang

National Cheng Kung University

Paper No. IMECE2005-80880, pp. 397-406; 10 pages
doi:10.1115/IMECE2005-80880
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter/workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components; direction-shearing, direction-plowing, magnitude-shearing and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine unknown process damping coefficients from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping.

Copyright © 2005 by ASME
Topics: Damping , Modeling , Milling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In