0

Full Content is available to subscribers

Subscribe/Learn More  >

Current Waveform Optimization for Low Noise Permanent Magnet Motors

[+] Author Affiliations
Guandong Jiao

Clemson University, Clemson, SC

Christopher D. Rahn

Pennsylvania State University, University Park, PA

Paper No. IMECE2002-33058, pp. 183-191; 9 pages
doi:10.1115/IMECE2002-33058
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-3643-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

During torque production, the varying magnetic fields inside an electric motor excite vibration that radiates acoustic noise. In consumer applications, this noise can influence the perceived product quality. Noises from propulsion and auxiliary electric motors on naval vessels create an acoustic signature that increases detectability. The dominant noise occurs at twice the electrical frequency (2E). For permanent magnet (PM) machines, the attraction between the rotor permanent magnets and the stator iron causes a radial force that varies sinusoidally around the stator. The stator coil currents generate a rotating magnetic field that produces rotor torque. This paper develops a new commutation strategy for PM machines that uses higher stator currents to minimize 2E noise by reducing radial force ripple without sacrificing torque. An analytical model is developed that predicts rotor torque and radial force ripple as functions of the stator currents. Based on this model, the phase currents are optimally commutated to maintain constant torque production and reduce force ripple. The optimal commutation is numerically investigated on a small PM motor using ANSYS FEA. The ANSYS results show a 30% reduction in force ripple at no load.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In