0

Full Content is available to subscribers

Subscribe/Learn More  >

Microforming: Study of Friction Conditions and the Impact of Low Friction/High-Strength Die Coatings on the Extrusion of Micropins

[+] Author Affiliations
Neil Krishnan, Jian Cao

Northwestern University

Kuniaki Dohda

Gifu University

Paper No. IMECE2005-81490, pp. 331-340; 10 pages
doi:10.1115/IMECE2005-81490
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Microforming is a relatively new realm of manufacturing technology that addresses the issues involved in the fabrication of metallic microparts, i.e., metallic parts that have at least two characteristic dimensions in the sub-millimeter range. The recent trend towards miniaturization of products and technology has produced a strong demand for such metallic microparts with extremely small geometric features and high tolerances. Conventional forming technologies, such as extrusion, have encountered new challenges at the micro-scale due to the influence of ‘size effects’ that tend to be predominant at this length scale. One of the factors that shows a strong influence is friction. This paper focuses on the frictional behavior observed at various sample sizes during micro-extrusion. A novel experimental setup consisting of forming assembly and a loading stage has been developed to obtain the force-displacement response for the extrusion of pins made of brass (Cu/Zn: 70/30). This experimental setup is used to extrude pins with a circular cross-section that have a final extruded diameter ranging from 1.33 mm down to 570 microns. The experimental results are then compared to finite-element simulations and analytical models to quantify the frictional behavior. It was found that the friction condition was non-uniform and showed a dependence on the dimensions (or size) of the micropin. The paper also investigates the validity of using high-strength/ low friction die coatings to improve the tribological characteristics observed in micro-extrusion. Three different extrusion dies coated with diamond-like carbon with silicon (DLC-Si), chromium nitride (CrN) and titanium nitride (TiN) were used in the micro-extrusion experiments. All the coatings worked satisfactorily in reducing the friction and correspondingly, the extrusion force with the DLC-Si coating producing the best results.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In