Full Content is available to subscribers

Subscribe/Learn More  >

The Reduction of Deformation Energy and Increase in Workability of Metals Through an Applied Electric Current

[+] Author Affiliations
Timothy A. Perkins, John T. Roth

Pennsylvania State University at Erie

Paper No. IMECE2005-81060, pp. 313-322; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Many manufacturing processes (e.g., forging, rolling, extrusion, and sheet metal) rely on the application of heat to reduce the forces associated with fabricating parts. However, due to the negative implications associated with hot working, another more efficient means of applying energy is desired. This paper investigates the changes in the material properties of various metals (aluminum, copper, iron, and titanium based alloys) in response to electricity flow. Theory involving electromigration, and, more specifically, electroplasticity, is examined and the implications thereof are analyzed. It is shown that, using electrical current, the flow stresses in a material are reduced, resulting in a lower specific energy for open-die forging. It is also shown that an applied electrical current can increase the forgeability of materials, allowing greater deformation prior to cracking. Additionally, elastic recovery is shown to decrease when using electricity during deformation. Finally, For most materials, these effects were dependent on strain rate.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In