Full Content is available to subscribers

Subscribe/Learn More  >

Statistical Energy Analysis of Fluid-Filled Piping Vibrations and Acoustics

[+] Author Affiliations
Jerome E. Manning

Cambridge Collaborative, Inc., Cambridge, MA

Paper No. IMECE2002-32685, pp. 97-103; 7 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-3643-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The flow of vibratory energy in turbo-machinery piping systems can contribute significantly to the noise emission. Fluctuating pressures and mechanical vibrations of pumps and valves generate coupled vibration and acoustic waves that propagate throughout the system and radiate noise to the surrounding acoustic space. Statistical energy analysis provides a method to analyze the energy transmitted by these waves and to develop noise and vibration mitigation designs. The development of SEA models requires that special consideration be given to piping elbows and tees, where the coupling between structural vibrations and fluid acoustic waves may be high. This paper reviews the development of piping system prediction models and their limitations. A mobility-based approach is described to improve predictions at mid-frequencies where both statistical energy and finite element procedures often fail to provide accurate predictions.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In