Full Content is available to subscribers

Subscribe/Learn More  >

Osteoblast Adhesion on Tissue Engineering Scaffolds Made by Bio-Manufacturing Techniques

[+] Author Affiliations
T. Dutta Roy, F. W. Wang, L. Henderson

National Institute of Standards and Technology

J. J. Stone

North Dakota State University

W. Sun

Drexel University

E. H. Cho, S. J. Lockett

National Cancer Institute

Paper No. IMECE2005-82472, pp. 213-216; 4 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6


Scientific exploration into understanding and developing relationships between three-dimensional (3D) scaffolds prepared by rapid prototyping (RP) and cellular response has focused primarily on end results targeting osteoblast proliferation and differentiation. Here at the National Institute of Standards and Technology (NIST), we take a systems approach to developing relationships between material properties and quantitative biological responses. This study in particular focuses on the screening of parameters controlled by RP techniques and their ability to trigger signalling events leading to cell adhesion. This pioneering research in our group also characterizes the in vitro cell-material interactions of 2D films and 3D scaffolds. From there, one can postulate on contributory factors leading to cell migration, proliferation, and differentiation. In summary, we believe that the quantitative information from this fundamental investigation will enhance our knowledge of the interactions between cells and 3D material interfaces with respect to formation of focal adhesions. This work consists of two sections — the application of imaging techniques for 3D characterization of properties and culturing of osteoblasts for size and shape determination. This includes quantifying the number of focal adhesion sites. We are using 3D RP polycaprolactone (PCL) scaffolds as this surrogate model in which to compare 2D to 3D material performance and cell interactions. Using RP bio-manufacturing techniques to fabricate tissue engineering scaffolds allows for control of pore size, strut size, and layer thickness, therefore providing adjustable parameters to study which can potentially influence, or even dynamically modulate, cellular adhesion. Imaging results after culturing for 24 h showed differences in cell morphology and spreading relative to the different structures. The focal adhesion response also varied, indicating an apparent loss of organization in 3D scaffolds compared to 2D surfaces. See Results and Discussion for details.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In