0

Full Content is available to subscribers

Subscribe/Learn More  >

NIST Development of Reference Material Scaffolds for Tissue Engineering

[+] Author Affiliations
Joy P. Dunkers, Stefan D. Leigh, Marcus T. Cicerone, Forrest A. Landis, Francis W. Wang, John A. Tesk

National Institute of Standards and Technology

Paper No. IMECE2005-82012, pp. 207-212; 6 pages
doi:10.1115/IMECE2005-82012
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6

abstract

In consultation with ASTM and other stakeholders in Tissue-Engineered Medical Products (TEMPs) industry, the National Institute of Standards and Technology (NIST) initiated a project designed to produce Reference Material scaffolds for tissue engineering. The rationale for Reference Material scaffolds was developed through several NIST/Industry workshops. In brief, Reference Material scaffolds have multiple uses: facilitating the development and the validation of new test methods that measure interactions among various components of a TEMP; comparison with other scaffolds and scaffold materials in terms of cellular responses, biodegradation, and releases of growth factors; and comparisons of responses among various cell lines. The primary customers for Reference Material scaffolds are expected to be the TEMPs industry, academic researchers, regulators, and standards developing organizations. There are many properties of a TEMP that warrant development of multiple Reference Material scaffolds. Currently, NIST is defining a set of Reference Material scaffolds based on geometric descriptors such as permeability, pore volume, pore size distribution, interconnectivity, and tortuosity. In consultation with ASTM, NIST is testing three candidate scaffolds produced by: three dimensional (3-D) printing, stereolithography, and fused deposition modeling (FDM). Scaffolds made by these methods have been obtained from Mayo Clinic (Rochester, MN), Case Western Reserve University (CWRU) (Cleveland, OH), and Osteopore International (Singapore), respectively, for structural characterization. These prototype scaffolds, with well-defined architectures, have been selected to address the following items of interest: 1) establishment of useful functional definitions of porosity content, interconnectivity, and pores; 2) evaluation of testing methods listed in the Standard Guide for the Porosity of Polymeric Scaffolds for Use in Tissue-Engineered Medical Products, which is being drafted by ASTM. Currently, NIST and the Center for Devices and Radiological Health of the Food and Drug Administration, as well as other groups from US and foreign laboratories, are actively carrying out cross-validation test of these prototype scaffolds.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In