0

Full Content is available to subscribers

Subscribe/Learn More  >

Computer-Aided Tissue Engineering in Whole Bone Replacement Treatment

[+] Author Affiliations
M. Wettergreen, B. Bucklen, M. A. K. Liebschner

Rice University

W. Sun

Drexel University

Paper No. IMECE2005-82000, pp. 197-206; 10 pages
doi:10.1115/IMECE2005-82000
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Tissue engineering is developing into a less speculative field involving the careful interplay of numerous design parameters and multi-disciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopaedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the U.S alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in Computer Aided Tissue Engineering (CATE) are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer aided design (CAD), optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. Our study represents a patient specific approach for constructing a complete vertebral body via building blocks. Though some of the methods described cannot be realized with current technology, namely complete construction of the vertebral body via FDM, the necessary advances are not far off. Computing power and CAD programs need to improve slightly to allow the rapid generation of complex models that would ease the fabrication of an appropriate number of building blocks. The main bottleneck of the process described in this study is the general lack of knowledge of human mechanobiology and the role of cellular interactions on artificial substrates including immune responses, and foreign body reactions. Assuming these biological parameters can be identified, a scaffold may be designed with a proper pore size and interconnectivity, microstructure, degradation rate, and surface chemistry. The advantage of the outlined process lies in adjustment of the vertebral compliance first, to ensure adequate load transfer, an important property for vertebral replacement. Subsequently, net biological properties can be fine tuned by simply scaling the final construct. Mixing and matching of geometries may be utilized to design asymmetric scaffolds, or scaffolds that exhibit a discontinuous microstructural stiffness with the goal of accentuating fluid flow. Finally, while these techniques lend themselves to the formulation of bone constructs, they can be used for other parts of the body as well that do not require load-bearing support.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In