0

Full Content is available to subscribers

Subscribe/Learn More  >

Manufacturing System Development for Fabrication of Bone Scaffold

[+] Author Affiliations
Lin Lu, Robert S. Dembzynski, Mark J. Mondrinos, David Wootton, Peter I. Lelkes, Jack Zhou

Drexel University

Paper No. IMECE2005-80937, pp. 127-136; 10 pages
doi:10.1115/IMECE2005-80937
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Musculoskeletal conditions are a major health concern in United States because of a large aging population and increased occurrence of sport-related injuries. The need for bone substitutes is especially important. Traditional treatments of bone-defect have many of limitations. Bone tissue engineering may offer a less painful alternative to traditional bone grafts with lower risk of infection. This research integrates biomimetic modeling, solid freeform fabrication (SFF), systems and control, and tissue engineering in one intelligent system for structured, highly porous biomaterials, which will be applied to bone scaffolds. Currently a new SFF-based fabrication system has been developed, which uses a pressurized extrusion to print highly biocompatible and water soluble sucrose bone scaffold porogens. To date, this system can build simple bone structures. In parallel we are utilizing a commercial rapid prototyping (RP) machine to fabricate thermoplastic porogens of various designs to determine the feasibility of injecting a highly viscous scaffold material into porogens. Materials which have been successfully used to make scaffolds by injection include calcium phosphate cement (CPC), molten poly-caprolactone (PCL), 90/10 and 80/20 (v/v %) composite of PCL and calcium phosphate (CaPO4 ,). Results presented for the injection method include characterization of attainable feature resolution of the RP machine, as well as preliminary cell-biomaterial interaction data demonstrating biocompatibility of CPC scaffolds. The preliminary results using a commercial rapid prototyping machine have demonstrated that the indirect porogen technique can improve 2–4 folds the resolution of SFF system in fabricating bone scaffolds. The resultant scaffolds demonstrate that the defined porous structures will be suitable for tissue engineering applications.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In