Full Content is available to subscribers

Subscribe/Learn More  >

Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications

[+] Author Affiliations
Kazutoshi Haraguchi, Toru Takehisa

Kawamura Institute of Chemical Research

Paper No. IMECE2005-80533, pp. 119-126; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


A novel class of nanocomposite hydrogels (NC gels) with a unique organic / inorganic network structure was synthesized by in-situ free-radical polymerization of N-isopropylacrylamide (NIPA) or N,N-dimethylacrylamide (DMAA) in the presence of inorganic clay (hectorite). Since NC gels are composed of a unique organic / inorganic network structure, which consists of exfoliated clay platelets uniformly dispersed in an aqueous medium with a number of flexible polymer chains linking them together, NC gels exhibit high transparency, high degrees of swelling, and superb mechanical properties with extraordinarily large deformations. Also, NC gels formed from thermo-sensitive polymers, e.g. PNIPA, exhibit rapid temperature-response in transparency and gel volume (de-swelling) at the lower critical solution temperature (LCST). All the properties of NC gels are very different from those of conventional, chemically-crosslinked hydrogels (OR gels). Here, we evaluated various properties of NC gels from a biomaterials point of view, such as mechanical toughness (capable of sewing), absorption (water and saline), purification and extraction, drying (effect of cover film), coexistence of absorption and drying, sterilization (by autoclave and γ-ray irradiation), preliminary implantation (implanted to rabbit intramuscularly) and blood compatibility. These results indicate that NC gels are promising as soft biomaterials with blood compatibility as well as high transparency, absorbing power and mechanical properties.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In