0

Full Content is available to subscribers

Subscribe/Learn More  >

Force Response of Single Living Cells Due to Localized Deformation (Invited Talk)

[+] Author Affiliations
T. Saif, C. Sager, S. Coyer

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. IMECE2002-32808, pp. 591-593; 3 pages
doi:10.1115/IMECE2002-32808
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Microelectromechanical Systems
  • ISBN: 0-7918-3642-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

We present a method for measuring the mechanical response of a single cell in-situ when local deformation is applied at an adhesion site(s) by a functionalized MEMS (Micro Electro Mechanical Systems) force sensor with pN – nN force resolution, and with force and displacement ranges of 100s of nNs and μms. The force sensor is a micro mechanical cantilever beam made of single crystal silicon (SCS), coated by a thin layer of Fibronectin, an extra cellular matrix (ECM) protein, to activate cell adhesion. The end of the beam is brought in contact with a cell to form the adhesion site(s). The cantilever is then moved away from the cell to locally deform it. The force on the cell is measured from the deformation of the cantilever until the adhesion sites fails. We demonstrate the method by deforming several endothelial and fibroblast cells. Force response of the fibroblast cell shows linear behavior.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In