0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Medical Data Manipulation for Bone Surgery Simulation

[+] Author Affiliations
Qiang Niu, Xiaoyi Chi, Ming C. Leu

University of Missouri at Rolla

Paper No. IMECE2005-79336, pp. 91-97; 7 pages
doi:10.1115/IMECE2005-79336
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Manufacturing Engineering and Materials Handling, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Manufacturing Engineering Division and Materials Handling Division
  • ISBN: 0-7918-4223-1 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Medical image data obtained from Computed Tomography (CT) are used as input to reconstruct and visualize 3-D structures of human bones for the purpose of developing a virtual reality (VR) based bone surgery system. These data are used for geometric modeling, force modeling, and model update to perform simulation of material removal with graphic and haptic rendering. One important issue in bone surgery simulation is to handle the large, complex, and often poor-quality data. Although the processing power of personal computer has increased greatly over the years, improper data handling can still cause implementation problems such as excessive memory consumption, low data processing speed, and incapability of real-time simulation. This paper presents a method for managing large CT scan data based on the consideration of implementation complexity, memory storage and computational overhead. Besides medical data acquisition and image processing, two important computer graphics concepts, i.e. bounding volume and adaptive subdivision, are applied to remove irrelevant data and to organize the rest data. Two data structures, a complex linked list and a Quadtree list, are developed to store and organize the image data. These data are processed before VR simulation so as to reduce the data update time. With the proposed method, the memory bandwidth requirement is reduced drastically and real-time simulation performance is achieved.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In