Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation

[+] Author Affiliations
Norbert Müller

Michigan State University, East Lansing, MI

Luc G. Fréchette

Columbia University, New York, NY

Paper No. IMECE2002-39628, pp. 513-522; 10 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Microelectromechanical Systems
  • ISBN: 0-7918-3642-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The presented work analyses the design space and performance potential of microfabricated Brayton cycle and Rankine cycle devices, accounting for lower component efficiencies, temperatures limited by the material properties and system implementation—constraints imposed by silicon microfabrication and miniaturization. By exploring the design space of such microsystems, their potential thermal efficiency and power density are defined. Results for both types of devices are shown graphically and design challenges and guidelines are determined and found to be different from their large-scale counterparts. Similar analysis was performed for Brayton and Rankine cycle devices, with more complete assessment of the latter by including, windage, generator, conductive and heat sink losses. In contrast to the Brayton cycle, the compression work of the Rankine cycle is minimal and the pump efficiency is not critical. The investigation suggests a higher potential for Rankine cycle devices than for Brayton cycle devices.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In