Full Content is available to subscribers

Subscribe/Learn More  >

A Nano-Scale Multi-Asperity Contact and Friction Model

[+] Author Affiliations
George G. Adams, Sinan Müftü, Nazif Mohd Azhar

Northeastern University, Boston, MA

Paper No. IMECE2002-39305, pp. 455-462; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Microelectromechanical Systems
  • ISBN: 0-7918-3642-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


As surfaces become smoother and loading forces decrease in applications such as MEMS and NEMS devices, the asperity contacts which comprise the real contact area will continue to decrease into the nano scale regime. Thus it becomes important to understand how the material and topographical properties of surfaces contribute to measured friction forces at this nano scale. We have incorporated the single asperity nano contact model of Hurtado and Kim into a multi-asperity model for contact and friction which includes the effect of asperity adhesion forces using the Maugis-Dugdale model. Our model spans the range from nano-scale to micro-scale to macro-scale contacts. We have identified three key dimensionless parameters representing combinations of surface roughness measures, Burgers vector length, surface energy, and elastic modulus. Results are given for the normal and friction forces vs. separation, and for the friction coefficient vs. normal force for various values of these key parameters.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In