Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of Heat Transfer Due to Plasma Flow in Material Processing Applications

[+] Author Affiliations
V. Rajamani, R. Anand, J. Sekhar, M. A. Jog

University of Cincinnati

G. S. Reddy

MHI, Inc.

Paper No. IMECE2005-79782, pp. 889-893; 5 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Convective heating is used in materials processing industry for heat treatment and melting applications. Only recently, a new plasma device for convective heating at atmospheric pressure has become commercially available. In this paper, we have investigated heating of an aluminum sprue by conventional convective heating by air and by plasma flow. Transient temperature measurements were made in the sprue interior and the overall heat transfer coefficient was computationally predicted in the two cases. Results show that there is significant enhancement of heat transfer in convective plasma heating compared to heating due to unionized gas under identical flow and temperature conditions. For the cases considered in this study, close to a 60% increase in the heat transfer rate was obtained. The key finding is that even small amount of ionization (~ < 1%) can lead to significant increase in heat transfer coefficient.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In