Full Content is available to subscribers

Subscribe/Learn More  >

Performance Comparison of Numerical Procedures for Efficiently Solving a Microscale Heat Transport Equation During Femtosecond Laser Heating of Nanoscale Metal Films

[+] Author Affiliations
Ravi Ranjan Kumar, J. M. McDonough, M. P. Mengüç, Illayathambi Kunadian

University of Kentucky

Paper No. IMECE2005-79542, pp. 863-868; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


An alternative discretization and solution procedure for implicitly solving a 3-D microscale heat transport equation during femtosecond laser heating of nanoscale metal films has been developed (Kunadian et al. [1]). The proposed numerical technique directly solves a single partial differential equation, unlike other techniques available in the literature which splits the equation into a system of two equations and then apply discretization. The present paper investigates performance of its split and unsplit methods of solution via numerical experiments using Gauss–Seidel, conjugate gradient, generalized minimal residual and δ-form Douglas–Gunn time-splitting methods to compare the computational cost involved in these methods. The comparison suggests that the unsplit method [1] employing δ-form Douglas–Gunn spatial time-splitting is the most efficient way in terms of CPU time taken to complete the simulation of solving the 3-D time dependent microscale heat transport equation.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In