Full Content is available to subscribers

Subscribe/Learn More  >

Dual Role of Nanoparticles in the Thermal Conductivity Enhancement of Nanoparticle Suspensions

[+] Author Affiliations
Calvin H. Li, G. P. Peterson

Rensselaer Polytechnic Institute

Paper No. IMECE2005-80451, pp. 745-750; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Experimental evidence exists that the addition of a small quantity of nanoparticles to a base fluid, can have a significant impact on the effective thermal conductivity of the resulting suspension. The causes for this are currently thought to be due to a combination of two distinct mechanisms. The first is due to the change in the thermophysical properties of the suspension, resulting from the difference in the thermal conductivity of the fluid and the particles, and the second is thought to be due to the transport of thermal energy by the particles, due to the Brownian motion of the particles. In order to better understand these phenomena, a theoretical model has been developed that examines the effect of the Brownian motion. In this model, the well-known approach first presented by Maxwell, is combined with a new expression that incorporates the effect of the Brownian motion and describes the physical phenomena that occurs because of it. The results indicate that the enhanced thermal conductivity may not in fact be due to the transport of energy by the particles, but rather, due to the stirring motion caused by the movement of the nanoparticles which enhances the heat transfer within the fluid. The resulting model shows good agreement when compared with the existing experimental data and perhaps more importantly helps to explain the trends observed from a fundamental physical perspective. In addition, it provides a possible explanation for the differences that have been observed between the previously obtained experimental data, the predictions obtained from Maxwell’s equation and the theoretical models developed by other investigators.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In