Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Radiative and Optical Behavior of Nanofluids Based on Multiple and Dependent Scattering Theories

[+] Author Affiliations
Ravi S. Prasher

Intel Corporation

Patrick E. Phelan

Arizona State University

Paper No. IMECE2005-80302, pp. 739-743; 5 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


There is a lot of interest in the research community about nanofluids due to their high thermal conductivity and potential applications as heat transfer fluids. In this paper we calculate the optical and radiative properties of nanofluids. Results indicate that the radiative properties of nanofluids can be very different from those of the base fluid, suggesting that these properties can be tailored to satisfy specific applications. Results also suggest that multiple and dependent scattering effects can be very dominant in nanofluids.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In