0

Full Content is available to subscribers

Subscribe/Learn More  >

Method for Obtaining Thermal Conductivity From Modified Laser Flash Measurement

[+] Author Affiliations
Bochuan Lin, Heng Ban, Chao Li, Rosalia N. Scripa

University of Alabama at Birmingham

Ching-Hua Su, Sandor L. Lehoczky

NASA/Marshall Space Flight Center

Paper No. IMECE2005-79932, pp. 725-730; 6 pages
doi:10.1115/IMECE2005-79932
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Laser flash method is commonly used to measure the thermal diffusivity of solids. In the original thermal analysis, adiabatic boundary conditions were used and the time for sample rear surface temperature to reach 50% of maximum value was used to calculate the thermal diffusivity. Later other boundary conditions were included in the analysis to compensate for the heat loss. The laser flash method can be modified to determine the thermal conductivity by comparing the temperature rise of the sample with a standard sample, both of which are coated to ensure identical surface emissivity. In our previous studies of applying the laser flash method to semiconductor melts, we have shown that it is possible to obtain thermal conductivity, specific heat capacity and thermal diffusivity from the experimental data. In these studies, the melt sample was sealed in a specially-designed fused silica cell. The heat transfer between melt sample and the fused silica cell allows the thermal conductivity to be included in the analysis. Therefore, the temperature response of the melt sample was controlled not only by the thermal diffusivity and conductivity of sample, but also by the thermal properties of fused silica cell. Using a computational fitting process, we obtained both thermal diffusivity and thermal conductivity of the sample. In this paper, an analytic solution for the transient heat transfer inside the sample and fused silica cell was developed. The influence of fused silica cell was included and the heat transfer to fused silica cell had a significant effect on the time-temperature response of the sample. Therefore, the rear surface temperature of the sample, described by an analytical solution, could be used to obtain both thermal diffusivity and thermal conductivity of the sample with known properties of the fused silica cell. The results indicated that this method was applicable for a wide range of sample and cell properties. The original solution for laser flash method became an extreme case in the current theory

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In