Full Content is available to subscribers

Subscribe/Learn More  >

Conjugate Heat Transfer Analysis of Circular Microtube Under Time Varying Heat Source

[+] Author Affiliations
Abdullatif A. Gari, Muhammad M. Rahman

University of South Florida

Paper No. IMECE2005-82168, pp. 663-668; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


When a magnetic field is applied to a magnetic material it releases energy. It has been proven experimentally that this temperature rise could be as high as 20 K when a magnetic field of 10 T is applied. Heat is generated when the magnetic field is applied and cooling is produced when the magnetic field is released. The purpose of this study is to explore transient heat transfer coefficient when a fluid is circulated in the substrate through microchannels. Equations for the conservation of mass, momentum, and energy were solved in the fluid region. In the solid region, the transient heat conduction equation was solved. Gadolinium and water were picked as the magnetic material and working fluid respectively. The results are represented by plotting the variations of heat transfer coefficient and Nusselt number with time at various sections of the tube. The effects of the magnetic field strength, diameter of the microtube in the substrate, and Reynolds number were studied. It was found that the heat transfer coefficient changes with time in a periodic fashion when heating and cooling are generated in the system by repeated introduction and relaxation of the magnetic field. The results of this study will be useful for the development of microtube heat exchangers for a compact magnetic refrigerator.

Copyright © 2005 by ASME
Topics: Heat , Heat transfer



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In