0

Full Content is available to subscribers

Subscribe/Learn More  >

Internal Condensing Flows Inside a Vertical Pipe: Experimental/Computational Investigations of Effects of Constrained and Natural Exit Conditions

[+] Author Affiliations
A. Narain, A. Siemionko, J. H. Kurita, T. W. Ng, N. Kim, K. Opella, P. O. Sweger

Michigan Technological University

Paper No. IMECE2005-80441, pp. 543-553; 11 pages
doi:10.1115/IMECE2005-80441
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The flow and heat transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. For steady/quasi-steady internal condensing flows (that involve compressible vapor at low Mach Numbers), the vapor’s ability to change its density — and hence interfacial mass transfer rates and associated locations of the interface — allows the flow to have a rather significant dependence on exit conditions. Both experimental and direct computational simulation results presented here show that this is indeed the case for flows of pure vapor experiencing film condensation on the inside walls of a vertical tube. In applications, the totality of boundary conditions are determined not only by the condenser; but also by the flow-loop (or the system) — of which the condenser is only a part. Therefore, the results outlined here should contribute towards a better understanding of the behavior (particularly the extent to which vapor compressibility effects affect the flow regimes of operation — i.e. annular, plug/churn, etc.) and response (transients due to start-up, system instabilities, etc.) of condensers in application systems (e.g. Rankine Cycle power plants, Capillary Pumped Loops, Looped Heat Pipes, etc.). In this connection, an experimental example of a relevant system instability is presented here. In summary, the experimental results presented here, and computational results presented elsewhere, reinforce the fact that there exist multiple steady solutions (with different heat transfer rates) for different exit conditions and that there also exists a “natural” steady solution for straight vertical condensers (circular and rectangular cross-sections).

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In