Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Simultaneous Gas Absorption and Evaporation of Large Droplet

[+] Author Affiliations
Tov Elperin, Andrew Fominykh, Boris Krasovitov

Ben-Gurion University of the Negev

Paper No. IMECE2005-79924, pp. 239-246; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


In this study we investigated numerically simultaneous heat and mass transfer during evaporation/condensation on the surface of a stagnant droplet in the presence of inert admixtures containing non-condensable solvable gas. The performed analysis is pertinent to slow droplet evaporation/condensation when Mach number is small (M≪1). The system of transient conjugate nonlinear energy and mass conservation equations was solved using anelastic approximation. Transport coefficients of the gaseous phase were calculated as functions of temperature and concentrations of gaseous species. Thermophysical properties of the liquid phase are assumed to be constant. Using the material balance at the droplet surface we obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account the effect of solvable gas absorption at the gas-liquid interface. We derived also boundary conditions at gas-liquid interface taking into account the effect of gas absorption. The governing equations were solved using a method of lines. Numerical calculations showed essential change of the rates of heat and mass transfer in water droplet-air-water vapor system under the influence of solvable species in a gaseous phase. Consequently, the use of additives of solvable noncondensable gases to enhance the rate of heat and mass transfer in dispersed systems allows to increase the efficiency and reduce the size of gas-liquid contactors.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In