Full Content is available to subscribers

Subscribe/Learn More  >

Monte Carlo Schemes for Radiative Transfer in Media Represented by Particle Fields

[+] Author Affiliations
Anquan Wang, Michael F. Modest

Pennsylvania State University

Paper No. IMECE2005-82993, pp. 191-200; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Monte Carlo ray-tracing schemes are developed for the evaluation of radiative heat transfer for problems, in which the participating medium is represented by discrete point-masses, such as the flow field and scalar fields in PDF Monte Carlo methods frequently used in combustion modeling. Photon ray tracing in such cases requires that an optical thickness is assigned to each of the point-masses. Two approaches are discussed, the Point Particle Model (PPM), in which the shape of particle is not specified, and the Spherical Particle Model (SPM) in which particles are assumed to be spheres with constant radiation properties. Another issue for ray tracing in particle fields is the influence region of a ray. Two ways of modeling a ray are proposed. In the first, each ray is treated as a standard volume-less line. In the other approach, the ray is assigned a small solid angle, and is thus treated as a cone with a decaying influence function away from its center line. Based on these models, three different interaction schemes between rays and particles are proposed, i.e., Line-SPM, Cone-PPM and Cone-SPM methods, and are compared employing several test problems.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In