Full Content is available to subscribers

Subscribe/Learn More  >

Multilayer Insulation Venting During Payload Depressurization

[+] Author Affiliations
Ingrid Cotoros, Ab Hashemi

Lockheed Martin Advanced Systems Company

Paper No. IMECE2005-80658, pp. 55-59; 5 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4222-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Multilayer Insulation (MLI) blankets consist of closely spaced aluminum coated shields that are spaced apart to reduce heat transfer between the payload and the environment, particularly in vacuum. In space application, satellite systems and sub-systems are wrapped in MLI blankets to thermally isolate them from the environment and achieve thermal control requirements. During spacecraft launch, the payload undergoes a rapid depressurization before reaching steady state condition. The MLI blankets are usually perforated and/or connected at the boundaries with Velcro strips to allow out-gassing. The blankets can lose their integrity and functionality if the depressurization process is too rapid: the out-gassing flow can tear the perforations, and the pressure differential built-up across the blanket can pull the Velcro strips apart. This paper describes the design and modeling of depressurization through X-slits cut into the blanket and Velcro strips taped along the sides. A methodology is developed, and a model for quantifying the pressure differential build-up is described and applied to a payload enclosure aboard a Delta II rocket.

Copyright © 2005 by ASME
Topics: Insulation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In