0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Concept to Improve the Performance of LED Panel Using Drilled Holes

[+] Author Affiliations
S. B. Chiang, C. C. Wang

Industrial Technology Research Institute

Paper No. IMECE2005-82627, pp. 813-817; 5 pages
doi:10.1115/IMECE2005-82627
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

In this study, the concept of the thermal module of LEDs cooling by use of drilled hole to entrain air flow was examined. It is found that the drilled hole does not necessarily improve the overall performance. It depends on the size of the drilled hole, the number of drilled holes, and the locations. The heat transfer coefficients are generally increased with the number of drilled holes and the diameter of the drilled hole. In this paper, the plate fin heat sink has a higher heat transfer coefficients than pin fins, but the overall performance of the LED panel having pin fin outperforms that of plate fin. This is because the pin fin provides much larger surface area. For decrease the maximum temperature of the LED panel, placement of the drilled holes along the hot region will be more effective.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In