Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Performance of Micro-Structured Evaporation Surfaces: Application to Cooling of High Flux Microelectronics

[+] Author Affiliations
E. Al-Hajri, M. Ohadi, S. V. Dessiatoun, J. Qi

University of Maryland

Paper No. IMECE2005-82583, pp. 799-805; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


An experimental investigation on characterization of copper-finned micro-grooved surfaces for effective evaporation heat transfer with applications to cooling of high flux electronics was conducted in the present study. Performance of the copper-finned microstructures were studied as a function of operating parametric values of fin density, fin height, fin length, and channel width over a surface which was rosin soldered to a 10 mm × 10 mm heating block (typical size of an electronic chip). The performance of the copper-finned microstructures versus a flat/smooth nichrome plate in HFE-7100 was significantly higher. Two experimental conditions were investigated. In the first set of experiments pool boiling over the groves was examined, where as in the second set of experiments the fluid was forced-fed into the grooves in a forced convection mode. It is shown that the forced fed mode yields higher heat transfer coefficients than the submerged/pool boiling mode. In general the micro-grooved surfaces performed at least three times better than the flat/smooth surface and preliminary results with the forced-fed evaporation experiments suggest that an order of magnitude heat transfer coefficients are possible when compared with a smooth surface.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In