Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study

[+] Author Affiliations
Waqar A. Khan, Richard J. Culham, Milan M. Yovanovich

University of Waterloo

Paper No. IMECE2005-79941, pp. 663-675; 13 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


An integral approach of the boundary layer analysis is employed for the modeling of fluid flow around and heat transfer from infinite circular cylinders in power-law fluids. The Von Karman-Pohlhausenmethod is used to solve the momentum integral equation whereas the energy integral equation is solved for both isothermal and isoflux boundary conditions. A fourth-order velocity profile in the hydrodynamic boundary layer and a third-order temperature profile in the thermal boundary layer are used to solve both integral equations. Closed form expressions are obtained for the drag and heat transfer coefficients that can be used for a wide range of the power-law index, and generalized Reynolds and Prandtl numbers. It is found that pseudoplastic fluids offer less skin friction and higher heat transfer coefficients than dilatant fluids. As a result, the drag coefficients decrease and the heat transfer increases with the decrease in power-law index. Comparison of the analytical models with available experimental/numerical data proves the applicability of the integral approach for power-law fluids.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In