0

Full Content is available to subscribers

Subscribe/Learn More  >

High Performance Heat Storage and Dissipation Technology

[+] Author Affiliations
Chanwoo Park

Advanced Cooling Technologies, Inc.

Kwang J. Kim

University of Nevada at Reno

Joseph Gottschlich, Quinn Leland

Air Force Research Laboratory

Paper No. IMECE2005-82313, pp. 615-621; 7 pages
doi:10.1115/IMECE2005-82313
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

High power solid state laser systems operating in a pulse mode dissipate the transient and excessively large waste heat from the laser diode arrays and gain material. The heat storage option using Phase Change Materials (PCMs) has been considered to manage such peak heat loads not relying on oversized systems for real-time cooling. However, the PCM heat storage systems suffer from the low heat storage densities and poor thermal conductivities of the conventional PCMs, consequently requiring large PCM volumes housed in thermal conductors such as aluminum or graphite foams. We developed a high performance metal hydride heat storage system for efficient and passive acquisition, storage, transport and dissipation of the transient, high heat flux heat from the high power solid state laser systems. The greater volumetric heat storage capacity of metal hydrides than the conventional PCMs can be translated into very compact systems with shorter heat transfer paths and therefore less thermal resistance. Other exclusive properties of the metal hydride materials consist of fast thermal response and active cooling capability required for the precision temperature control and transient high heat flux cooling. This paper discusses the operating principle and heat storage performance results of the metal hydride heat storage system through system analysis and prototype testing. The results revealed the superior heat storage performance of the metal hydride system to a conventional PCM system in terms of temperature excursion and system volume requirement.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In