Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Catalyst-Assisted Premixed Methane/Air Combustion in a Stagnation-Point Flow

[+] Author Affiliations
James T. Wiswall, Margaret S. Wooldridge, Hong G. Im

University of Michigan

Paper No. IMECE2005-82843, pp. 415-420; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Micro-scale combustion is an attractive alternative as a power source for numerous applications. The high-energy densities of hydrocarbon fuels make micro-scale combustors particularly appealing in comparison to fuel cells, batteries and other power generation devices. One of the major difficulties in the development of a micro-scale reactor is to sustain stable combustion in a small device with a high surface-to-volume ratio. To this end, catalytic combustion is considered a viable means to extend the operating range of combustors. In this work, a new stagnation-point flow burner facility has been developed to provide a canonical framework to study the interactions between fluid dynamics and chemical reactions in the gas-phase and heterogeneous modes. The stagnation-point flow burner is used to study extinction limits of catalyst-assisted premixed methane combustion. Basic characterization of the burner is performed and preliminary experimental data for extinction limits are presented as a function of the flow strain rate, mixture equivalence ratio, and the level of catalytic activity.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In