Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Temperature and Incandescence Intensity of Nanosecond Pulsed-Laser Heated Soot Particles at High Pressures

[+] Author Affiliations
Fengshan Liu, David R. Snelling, Gregory J. Smallwood

National Research Council of Canada

Paper No. IMECE2005-81322, pp. 355-364; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by National Research Council of Canada


Histories of temperature and incandescence intensity of nanosecond pulsed-laser heated soot particles of polydispersed primary particles and aggregate sizes were calculated using an aggregate-based heat transfer model at pressures from 1 atm up to 50 atm. The local gas temperature, distributions of soot primary particle diameter and aggregate size assumed in the calculations were similar to those found in an atmospheric laminar diffusion flame. Relatively low laser fluences were considered to keep the peak particle temperatures below about 3400 K to ensure negligible soot particle sublimation. The shielding effect on the heat conduction between aggregated soot particles and the surrounding gas was accounted for based on results of direct simulation Monte Carlo calculations. After the laser pulse, the temperature of soot particles with larger primary particles or larger aggregates cools down slower than those with smaller primary particles or smaller aggregates due to smaller surface area-to-volume ratios. The effective temperature of soot particles in the laser probe volume was calculated based on the ratio of thermal radiation intensities of the soot particle ensemble at 400 and 780 nm. Due to the reduced mean free path of molecules with increasing pressure, the heat conduction between soot particles and the surrounding gas shifts from the free-molecular to the transition regime. Consequently, the rate of conduction heat loss from the soot particles increases significantly with pressure. The lifetime of laser-induced incandescence (LII) signal is significantly reduced as the pressure increases. At high pressures, the time resolved soot particle temperature is very sensitive to both the primary particle diameter and the aggregate size distributions, implying the time-resolved LII particle sizing techniques developed at atmospheric pressure lose their effectiveness at high pressures.

Copyright © 2005 by National Research Council of Canada



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In