0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhancing Combustion in a Dump Combustor Using Countercurrent Shear: Part 1 — Nonreacting Flow Control and Preliminary Combustion Results

[+] Author Affiliations
David J. Forliti

State University of New York at Buffalo

Alison A. Behrens, Paul J. Strykowski, Brian A. Tang

University of Minnesota

Paper No. IMECE2005-81267, pp. 339-346; 8 pages
doi:10.1115/IMECE2005-81267
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

During the last decade, countercurrent shear has been established as an effective flow control technique for increasing turbulent mixing in a variety of flow configurations and operating regimes. Based on the robust mixing enhancement observed for jets and shear layers, the technique appears to have many potential benefits for enhancement and control for turbulent combustion flows. Countercurrent shear flow control has been applied to a planar asymmetric rearward-facing step dump combustor. A nonreacting flow study on the implementation of suction-based countercurrent shear at the dump plane provided insight into the flow control mechanisms. Control of turbulence velocity and length scales occurs through two mechanisms, the development of a countercurrent shear layer near the dump plane, and enhanced global recirculation caused by the removal of mass at the dump plane. Parametric studies on the geometry of the suction slot indicate that the enhancement of the global recirculation zone is the primary mechanism for increasing global turbulence levels within the combustor. Turbulence energy and length scales both increase in a manner such that the spatially-filtered strain rates as measured with particle image velocimetry remain nominally constant, a desirable characteristic for premixed turbulent combustion. Connections will be made to a recent study on fully-developed turbulent countercurrent shear layers showing additional attractive features of countercurrent shear including enhanced turbulent energy production, entrainment, and three dimensionality. Preliminary reacting flow results for the dump combustor operating while burning premixed/prevaporized JP-10 illustrate qualitative changes in the turbulent combustion process within the combustor. The companion paper will describe the quantitative effects of countercurrent shear on the global heat release rates within the combustor.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In