0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of an HP-Adaptive Technique for Heat, Mass and Momentum Transport

[+] Author Affiliations
Xiuling Wang, Darrell W. Pepper

University of Nevada at Las Vegas

Paper No. IMECE2005-80079, pp. 87-92; 6 pages
doi:10.1115/IMECE2005-80079
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Part A
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4221-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

A three-step hp-adaptive finite element model (FEM) is employed to solve the governing equations for incompressible flow including mass and thermal transport. The adaptive FEM uses both mesh enrichment (h-adaptation) and spectral order incensement (p-adaptation) to maximize the rate of decrease of the interpolation error. The three-step adaptive methodology can be used to solve a wide variety of problems related to incompressible viscous flow including mass dispersion along with thermal transport. Highly accurate solutions are obtained using an optimally refined final mesh. The L2 energy norm is calculated to guide the adaptation procedure. Simulation results for incompressible flow over a backward facing step, natural convection in a partitioned enclosure and mass transport within a partitioned enclosure under thermal effects are presented. Results are compared with experimental data and numerical simulations reported in the literature. The efficiency of the proposed numerical technology is discussed.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In