0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of the Hydrodynamics of the Flow in an Axially Rotating Heat Pipe

[+] Author Affiliations
Gustavo Gutierrez

University of Puerto Rico, Mayaguez, Puerto Rico

Tien-Chien Jen

University of Wisconsin at Milwaukee, Milwaukee, WI

Paper No. IMECE2002-33075, pp. 1-13; 13 pages
doi:10.1115/IMECE2002-33075
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 5
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3636-3 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A numerical study is conducted on the vapor and liquid flow in a wick structure of an axially rotating heat pipe. For the vapor, the governing equations are the Navier-Stokes. For the liquid a space average of the Navier-Stokes equation is performed and a porous media model is introduced for the cross correlation that appears from the averaging process. A control volume approach on a staggered grid is used in the development of the computer program. Suction and blowing velocities are used as boundary conditions of the vapor and liquid, which are related to a local heat flux input in the evaporator section, and local heat flux output in the condenser section, respectively. The aim behind this study is the application of heat pipes in drilling applications. A triangular heat flux distribution is assumed in the evaporator due to the higher heat flux generated at the tip of the drill. A parametric study is conducted to analyze the effect of different parameters such as rotational speeds, saturation conditions, porosity, permeability and dimensions of the wick structure in the porous medium. These parameters significantly affect the pressure drop in the heat pipe and allow predicting failure conditions, which is critical in the design of heat pipes in drilling applications. The results of this study will be useful for the complete analysis of the heat pipe performance including the solution of the heat transfer on the solid wall as a conjugate problem.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In